Search results for "tensile propertie"

showing 6 items of 6 documents

The effect of polycations on early cement paste

2010

International audience; This paper studies the possibility for improving the ductility of cement based materials by means of oligocationic additives. Actually, the setting of cement is due to ionic correlation forces between highly negatively charged C-S-H nanoparticles throughout a calcium rich solution. The main drawback of this strong attraction is its very short range that results in low elastic deformation of hydrated cementitious materials. A way to enlarge the attraction range between C-S-H particles would be to add cationic oligomers that would compete with calcium ions modifying the ionic correlation forces via a bridging mechanism of longer range, which could lead to a more ductil…

Materials scienceBridging forceIonic bonding02 engineering and technology010402 general chemistry01 natural sciencesOligomerchemistry.chemical_compoundPolymers (D.)General Materials ScienceComposite materialCalcium silicate hydratechemistry.chemical_classificationCement paste (D.)Cationic polymerizationBuilding and ConstructionPolymer021001 nanoscience & nanotechnologyTensile properties (C.)0104 chemical sciences[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]MonomerchemistryChemical engineeringPolymerization[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Cementitious0210 nano-technology
researchProduct

Lemongrass Plant as Potential Sources of Reinforcement for Biocomposites: A Preliminary Experimental Comparison Between Leaf and Culm Fibers

2022

AbstractNowadays, the world requires more sustainable and eco-friendly materials to replace or limit the usage of synthetic materials. Moreover, several researchers focused their attention on the use of agricultural sources as reinforcement for biocomposites since they are abundant, cost-effective and environmentally favorable sources. In such a context, purpose of the present paper is the evaluation of lemongrass plant (Cymbopogon flexuosus) as possible source of natural reinforcement for biocomposites. To this aim, natural fibers were obtained from the leaf and the stem of lemongrass and their main properties were compared for the first time. To this scope, mechanical and thermal characte…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiEnvironmental EngineeringPolymers and PlasticsMaterials ChemistryChemical composition Lemongrass Morphology Natural fibers Tensile properties Thermal stabilityJournal of Polymers and the Environment
researchProduct

Thermo-Mechanical Behaviour of Flax-Fibre Reinforced Epoxy Laminates for Industrial Applications

2015

The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly r…

tensile propertieWork (thermodynamics)Materials scienceflax fibre compositemedicine.medical_treatmentcrimped unidirectional textilesComposite numbercrimped unidirectional textileflax fibre composite; tensile properties; crimped unidirectional textiles; damage; IR thermography; thermoelastic stress analysislcsh:TechnologyArticleSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineThermoelastic dampingUltimate tensile strengthmedicineGeneral Materials ScienceComposite materialSettore ING-IND/15 - Disegno E Metodi Dell'Ingegneria Industrialelcsh:Microscopylcsh:QC120-168.85tensile propertieslcsh:QH201-278.5lcsh:Tthermoelastic stress analysisStiffnessEpoxyTraction (orthopedics)IR thermographylcsh:TA1-2040visual_artThermographyvisual_art.visual_art_mediumlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringmedicine.symptomlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971damageMaterials
researchProduct

Effect of NaOH Treatment on Properties of Phoenix Sp. Fiber

2016

The aim of this paper is to investigate the effect of an alkali treatment on physical, chemical, mechanical, and morphological properties of Phoenix Sp. fibers. The use of natural fibers as reinforcement in polymer composites requires a deep investigation to understand their behavior and which treatment is more appropriate to improve the quality of the untreated material. For this reason, fibers were extracted from the petioles of the Phoenix Sp. plant and they were treated with NaOH solution in different weight concentrations (5%, 10%, and 15%). The mechanical behavior was investigated through tensile test on single fiber at different gauge length (20 mm, 30 mm, 40 mm, 50 mm, and 60 mm). C…

tensile propertiechemical propertieSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchinePhoenix Sp. fiberSettore ING-IND/22 - Scienza E Tecnologia Dei Materialichemical treatmentMaterials Science (miscellaneous)surface morphologygauge length
researchProduct

Effect of Core–Shell Rubber Nanoparticles on the Mechanical Properties of Epoxy and Epoxy-Based CFRP

2022

This research was funded by M-Era.Net project MERF “Matrix for carbon reinforced epoxy laminates with reduced flammability” grant No. 1.1.1.5/ERANET/20/04 from the Latvian State Education Development Agency and M-Era.Net project “EPIC—European Partnership for Improved Composites“ funded by grant No. TH06020001. A.S., K.S. and A.Z. are grateful to funding received from the European Union Horizon 2020 Framework program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

tensile propertiescore–shell rubber nanoparticlesepoxy; CFRP; core–shell rubber nanoparticles; tensile properties; fracture toughness; glass transition temperatureGeneral Materials Science:NATURAL SCIENCES::Physics [Research Subject Categories]glass transition temperatureCFRPepoxyfracture toughness
researchProduct

Flame-Retardant and Tensile Properties of Polyamide 12 Processed by Selective Laser Sintering

2022

This research was funded by the European Regional Development Fund within Measure 1.1.1.1 “Industry-Driven Research” of the Specific aid objective 1.1.1 “To increase the research and innovation capacity of scientific institutions of Latvia and their ability to attract external funding by investing in human resources and infrastructure” of the Operational Program “Growth and Employment” (Project No. 1.1.1.1/19/A/143). A.S. and A.Z. are grateful to funding received from the European Union Horizon 2020 Framework programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

tensile propertiespolyamide 12flame-retardant properties; vertical burn test; tensile properties; anisotropy; additive manufacturing; polyamide 12; selective laser sinteringCeramics and Composites:NATURAL SCIENCES::Physics [Research Subject Categories]vertical burn testanisotropyselective laser sinteringflame-retardant propertiesadditive manufacturingEngineering (miscellaneous)Journal of Composites Science
researchProduct